| 1 | Accept-Reject Sampling Method | 接受-拒绝抽样法/接受-拒绝采样法 |
| 2 | Accumulated Error Backpropagation | 累积误差反向传播 |
| 3 | Accuracy | 准确率 |
| 4 | Acquisition Function | 采集函数 |
| 5 | Action | 动作 |
| 6 | Activation Function | 激活函数 |
| 7 | Active Learning | 主动学习 |
| 8 | Adaptive Bitrate Algorithm | 自适应比特率算法 |
| 9 | Adaptive Boosting | AdaBoost |
| 10 | Adaptive Gradient Algorithm | AdaGrad |
| 11 | Adaptive Moment Estimation Algorithm | Adam算法 |
| 12 | Adaptive Resonance Theory | 自适应谐振理论 |
| 13 | Additive Model | 加性模型 |
| 14 | Affinity Matrix | 亲和矩阵 |
| 15 | Agent | 智能体 |
| 16 | Algorithm | 算法 |
| 17 | Alpha-Beta Pruning | α-β修剪法 |
| 18 | Anomaly Detection | 异常检测 |
| 19 | Approximate Inference | 近似推断 |
| 20 | Area Under ROC Curve | AUC(ROC曲线下方面积,度量分类模型好坏的标准) |
| 21 | Artificial Intelligence | 人工智能 |
| 22 | Artificial Neural Network | 人工神经网络 |
| 23 | Artificial Neuron | 人工神经元 |
| 24 | Attention | 注意力 |
| 25 | Attention Mechanism | 注意力机制 |
| 26 | Attribute | 属性 |
| 27 | Attribute Space | 属性空间 |
| 28 | Autoencoder | 自编码器 |
| 29 | Automatic Differentiation | 自动微分 |
| 30 | Autoregressive Model | 自回归模型 |
| 31 | BFGS | BFGS |
| 32 | Back Propagation | 反向传播 |
| 33 | Back Propagation Algorithm | 反向传播算法 |
| 34 | Back Propagation Through Time | 随时间反向传播 |
| 35 | Backward Induction | 反向归纳 |
| 36 | Backward Search | 反向搜索 |
| 37 | Bag of Words | 词袋 |
| 38 | Bandit | 赌博机/老虎机 |
| 39 | Base Learner | 基学习器 |
| 40 | Base Learning Algorithm | 基学习算法 |
| 41 | Baseline | 基准 |
| 42 | Batch | 批量 |
| 43 | Batch Normalization | 批量规范化 |
| 44 | Bayes Decision Rule | 贝叶斯决策准则 |
| 45 | Bayes Model Averaging | 贝叶斯模型平均 |
| 46 | Bayes Optimal Classifier | 贝叶斯最优分类器 |
| 47 | Bayes' Theorem | 贝叶斯定理 |
| 48 | Bayesian Decision Theory | 贝叶斯决策理论 |
| 49 | Bayesian Inference | 贝叶斯推断 |
| 50 | Bayesian Learning | 贝叶斯学习 |
| 51 | Bayesian Network | 贝叶斯网/贝叶斯网络 |
| 52 | Bayesian Optimization | 贝叶斯优化 |
| 53 | Beam Search | 束搜索 |
| 54 | Belief Network | 信念网/信念网络 |
| 55 | Belief Propagation | 信念传播 |
| 56 | Bellman Equation | 贝尔曼方程 |
| 57 | Benchmark | 基准 |
| 58 | Bernoulli Distribution | 伯努利分布 |
| 59 | Beta Distribution | 贝塔分布 |
| 60 | Between-Class Scatter Matrix | 类间散度矩阵 |
| 61 | Bias | 偏差/偏置 |
| 62 | Bias In Affine Function | 偏置 |
| 63 | Bias In Statistics | 偏差 |
| 64 | Bias Shift | 偏置偏移 |
| 65 | Bias-Variance Decomposition | 偏差 - 方差分解 |
| 66 | Bias-Variance Dilemma | 偏差 - 方差困境 |
| 67 | Bidirectional Recurrent Neural Network | 双向循环神经网络 |
| 68 | Bigram | 二元语法 |
| 69 | Bilingual Evaluation Understudy | BLEU |
| 70 | Binary Classification | 二分类 |
| 71 | Binomial Distribution | 二项分布 |
| 72 | Binomial Test | 二项检验 |
| 73 | Boltzmann Distribution | 玻尔兹曼分布 |
| 74 | Boltzmann Machine | 玻尔兹曼机 |
| 75 | Boosting | Boosting(一种模型训练加速方式) |
| 76 | Bootstrap Aggregating | Bagging |
| 77 | Bootstrap Sampling | 自助采样法 |
| 78 | Bootstrapping | 自助法/自举法 |
| 79 | Break-Event Point | 平衡点 |
| 80 | Bucketing | 分桶 |
| 81 | Calculus of Variations | 变分法 |
| 82 | Cascade-Correlation | 级联相关 |
| 83 | Catastrophic Forgetting | 灾难性遗忘 |
| 84 | Categorical Distribution | 类别分布 |
| 85 | Cell | 单元 |
| 86 | Chain Rule | 链式法则 |
| 87 | Chebyshev Distance | 切比雪夫距离 |
| 88 | Class | 类别 |
| 89 | Class-Imbalance | 类别不平衡 |
| 90 | Classification | 分类 |
| 91 | Classification And Regression Tree | 分类与回归树 |
| 92 | Classifier | 分类器 |
| 93 | Clique | 团 |
| 94 | Cluster | 簇 |
| 95 | Cluster Assumption | 聚类假设 |
| 96 | Clustering | 聚类 |
| 97 | Clustering Ensemble | 聚类集成 |
| 98 | Co-Training | 协同训练 |
| 99 | Coding Matrix | 编码矩阵 |
| 100 | Collaborative Filtering | 协同过滤 |
| 101 | Competitive Learning | 竞争型学习 |
| 102 | Comprehensibility | 可解释性 |
| 103 | Computation Graph | 计算图 |
| 104 | Computational Learning Theory | 计算学习理论 |
| 105 | Conditional Entropy | 条件熵 |
| 106 | Conditional Probability | 条件概率 |
| 107 | Conditional Probability Distribution | 条件概率分布 |
| 108 | Conditional Random Field | 条件随机场 |
| 109 | Conditional Risk | 条件风险 |
| 110 | Confidence | 置信度 |
| 111 | Confusion Matrix | 混淆矩阵 |
| 112 | Conjugate Distribution | 共轭分布 |
| 113 | Connection Weight | 连接权 |
| 114 | Connectionism | 连接主义 |
| 115 | Consistency | 一致性 |
| 116 | Constrained Optimization | 约束优化 |
| 117 | Context Variable | 上下文变量 |
| 118 | Context Vector | 上下文向量 |
| 119 | Context Window | 上下文窗口 |
| 120 | Context Word | 上下文词 |
| 121 | Contextual Bandit | 上下文赌博机/上下文老虎机 |
| 122 | Contingency Table | 列联表 |
| 123 | Continuous Attribute | 连续属性 |
| 124 | Contrastive Divergence | 对比散度 |
| 125 | Convergence | 收敛 |
| 126 | Convex Optimization | 凸优化 |
| 127 | Convex Quadratic Programming | 凸二次规划 |
| 128 | Convolution | 卷积 |
| 129 | Convolutional Kernel | 卷积核 |
| 130 | Convolutional Neural Network | 卷积神经网络 |
| 131 | Coordinate Descent | 坐标下降 |
| 132 | Corpus | 语料库 |
| 133 | Correlation Coefficient | 相关系数 |
| 134 | Cosine Similarity | 余弦相似度 |
| 135 | Cost | 代价 |
| 136 | Cost Curve | 代价曲线 |
| 137 | Cost Function | 代价函数 |
| 138 | Cost Matrix | 代价矩阵 |
| 139 | Cost-Sensitive | 代价敏感 |
| 140 | Covariance | 协方差 |
| 141 | Covariance Matrix | 协方差矩阵 |
| 142 | Critical Point | 临界点 |
| 143 | Cross Entropy | 交叉熵 |
| 144 | Cross Validation | 交叉验证 |
| 145 | Curse of Dimensionality | 维数灾难 |
| 146 | Cutting Plane Algorithm | 割平面法 |
| 147 | Data Mining | 数据挖掘 |
| 148 | Data Set | 数据集 |
| 149 | Davidon-Fletcher-Powell | DFP |
| 150 | Decision Boundary | 决策边界 |
| 151 | Decision Function | 决策函数 |
| 152 | Decision Stump | 决策树桩 |
| 153 | Decision Tree | 决策树 |
| 154 | Decoder | 解码器 |
| 155 | Decoding | 解码 |
| 156 | Deconvolution | 反卷积 |
| 157 | Deconvolutional Network | 反卷积网络 |
| 158 | Deduction | 演绎 |
| 159 | Deep Belief Network | 深度信念网络 |
| 160 | Deep Boltzmann Machine | 深度玻尔兹曼机 |
| 161 | Deep Convolutional Generative Adversarial Network | 深度卷积生成对抗网络 |
| 162 | Deep Learning | 深度学习 |
| 163 | Deep Neural Network | 深度神经网络 |
| 164 | Deep Q-Network | 深度Q网络 |
| 165 | Delta-Bar-Delta | Delta-Bar-Delta |
| 166 | Denoising | 去噪 |
| 167 | Denoising Autoencoder | 去噪自编码器 |
| 168 | Denoising Score Matching | 去躁分数匹配 |
| 169 | Density Estimation | 密度估计 |
| 170 | Density-Based Clustering | 密度聚类 |
| 171 | Derivative | 导数 |
| 172 | Determinant | 行列式 |
| 173 | Diagonal Matrix | 对角矩阵 |
| 174 | Dictionary Learning | 字典学习 |
| 175 | Dimension Reduction | 降维 |
| 176 | Directed Edge | 有向边 |
| 177 | Directed Graphical Model | 有向图模型 |
| 178 | Directed Separation | 有向分离 |
| 179 | Dirichlet Distribution | 狄利克雷分布 |
| 180 | Discriminative Model | 判别式模型 |
| 181 | Discriminator | 判别器 |
| 182 | Discriminator Network | 判别网络 |
| 183 | Distance Measure | 距离度量 |
| 184 | Distance Metric Learning | 距离度量学习 |
| 185 | Distributed Representation | 分布式表示 |
| 186 | Diverge | 发散 |
| 187 | Divergence | 散度 |
| 188 | Diversity | 多样性 |
| 189 | Diversity Measure | 多样性度量/差异性度量 |
| 190 | Domain Adaptation | 领域自适应 |
| 191 | Dominant Eigenvalue | 主特征值 |
| 192 | Dominant Strategy | 占优策略 |
| 193 | Down Sampling | 下采样 |
| 194 | Dropout | 暂退法 |
| 195 | Dropout Boosting | 暂退Boosting |
| 196 | Dropout Method | 暂退法 |
| 197 | Dual Problem | 对偶问题 |
| 198 | Dummy Node | 哑结点 |
| 199 | Dynamic Bayesian Network | 动态贝叶斯网络 |
| 200 | Dynamic Programming | 动态规划 |
| 201 | Early Stopping | 早停 |
| 202 | Eigendecomposition | 特征分解 |
| 203 | Eigenvalue | 特征值 |
| 204 | Element-Wise Product | 逐元素积 |
| 205 | Embedding | 嵌入 |
| 206 | Empirical Conditional Entropy | 经验条件熵 |
| 207 | Empirical Distribution | 经验分布 |
| 208 | Empirical Entropy | 经验熵 |
| 209 | Empirical Error | 经验误差 |
| 210 | Empirical Risk | 经验风险 |
| 211 | Empirical Risk Minimization | 经验风险最小化 |
| 212 | Encoder | 编码器 |
| 213 | Encoding | 编码 |
| 214 | End-To-End | 端到端 |
| 215 | Energy Function | 能量函数 |
| 216 | Energy-Based Model | 基于能量的模型 |
| 217 | Ensemble Learning | 集成学习 |
| 218 | Ensemble Pruning | 集成修剪 |
| 219 | Entropy | 熵 |
| 220 | Episode | 回合 |
| 221 | Epoch | 轮 |
| 222 | Error | 误差 |
| 223 | Error Backpropagation | 误差反向传播 |
| 224 | Error Backpropagation Algorithm | 误差反向传播算法 |
| 225 | Error Correcting Output Codes | 纠错输出编码 |
| 226 | Error Rate | 错误率 |
| 227 | Error-Ambiguity Decomposition | 误差-分歧分解 |
| 228 | Estimator | 估计/估计量 |
| 229 | Euclidean Distance | 欧氏距离 |
| 230 | Evidence | 证据 |
| 231 | Evidence Lower Bound | 证据下界 |
| 232 | Exact Inference | 精确推断 |
| 233 | Example | 样例 |
| 234 | Expectation | 期望 |
| 235 | Expectation Maximization | 期望最大化 |
| 236 | Expected Loss | 期望损失 |
| 237 | Expert System | 专家系统 |
| 238 | Exploding Gradient | 梯度爆炸 |
| 239 | Exponential Loss Function | 指数损失函数 |
| 240 | Factor | 因子 |
| 241 | Factorization | 因子分解 |
| 242 | Feature | 特征 |
| 243 | Feature Engineering | 特征工程 |
| 244 | Feature Map | 特征图 |
| 245 | Feature Selection | 特征选择 |
| 246 | Feature Vector | 特征向量 |
| 247 | Featured Learning | 特征学习 |
| 248 | Feedforward | 前馈 |
| 249 | Feedforward Neural Network | 前馈神经网络 |
| 250 | Few-Shot Learning | 少试学习 |
| 251 | Filter | 滤波器 |
| 252 | Fine-Tuning | 微调 |
| 253 | Fluctuation | 振荡 |
| 254 | Forget Gate | 遗忘门 |
| 255 | Forward Propagation | 前向传播/正向传播 |
| 256 | Forward Stagewise Algorithm | 前向分步算法 |
| 257 | Fractionally Strided Convolution | 微步卷积 |
| 258 | Frobenius Norm | Frobenius 范数 |
| 259 | Full Padding | 全填充 |
| 260 | Functional | 泛函 |
| 261 | Functional Neuron | 功能神经元 |
| 262 | Gated RNN | 门控RNN |
| 263 | Gated Recurrent Unit | 门控循环单元 |
| 264 | Gaussian Distribution | 高斯分布 |
| 265 | Gaussian Kernel | 高斯核 |
| 266 | Gaussian Kernel Function | 高斯核函数 |
| 267 | Gaussian Mixture Model | 高斯混合模型 |
| 268 | Gaussian Process | 高斯过程 |
| 269 | Generalization Ability | 泛化能力 |
| 270 | Generalization Error | 泛化误差 |
| 271 | Generalization Error Bound | 泛化误差上界 |
| 272 | Generalize | 泛化 |
| 273 | Generalized Lagrange Function | 广义拉格朗日函数 |
| 274 | Generalized Linear Model | 广义线性模型 |
| 275 | Generalized Rayleigh Quotient | 广义瑞利商 |
| 276 | Generative Adversarial Network | 生成对抗网络 |
| 277 | Generative Model | 生成式模型 |
| 278 | Generator | 生成器 |
| 279 | Generator Network | 生成器网络 |
| 280 | Genetic Algorithm | 遗传算法 |
| 281 | Gibbs Distribution | 吉布斯分布 |
| 282 | Gibbs Sampling | 吉布斯采样/吉布斯抽样 |
| 283 | Gini Index | 基尼指数 |
| 284 | Global Markov Property | 全局马尔可夫性 |
| 285 | Global Minimum | 全局最小 |
| 286 | Gradient | 梯度 |
| 287 | Gradient Clipping | 梯度截断 |
| 288 | Gradient Descent | 梯度下降 |
| 289 | Gradient Descent Method | 梯度下降法 |
| 290 | Gradient Exploding Problem | 梯度爆炸问题 |
| 291 | Gram Matrix | Gram 矩阵 |
| 292 | Graph Convolutional Network | 图卷积神经网络/图卷积网络 |
| 293 | Graph Neural Network | 图神经网络 |
| 294 | Graphical Model | 图模型 |
| 295 | Grid Search | 网格搜索 |
| 296 | Ground Truth | 真实值 |
| 297 | Hadamard Product | Hadamard积 |
| 298 | Hamming Distance | 汉明距离 |
| 299 | Hard Margin | 硬间隔 |
| 300 | Hebbian Rule | 赫布法则 |
| 301 | Hidden Layer | 隐藏层 |
| 302 | Hidden Markov Model | 隐马尔可夫模型 |
| 303 | Hidden Variable | 隐变量 |
| 304 | Hierarchical Clustering | 层次聚类 |
| 305 | Hilbert Space | 希尔伯特空间 |
| 306 | Hinge Loss Function | 合页损失函数/Hinge损失函数 |
| 307 | Hold-Out | 留出法 |
| 308 | Hyperparameter | 超参数 |
| 309 | Hyperparameter Optimization | 超参数优化 |
| 310 | Hypothesis | 假设 |
| 311 | Hypothesis Space | 假设空间 |
| 312 | Hypothesis Test | 假设检验 |
| 313 | Identity Matrix | 单位矩阵 |
| 314 | Imitation Learning | 模仿学习 |
| 315 | Importance Sampling | 重要性采样 |
| 316 | Improved Iterative Scaling | 改进的迭代尺度法 |
| 317 | Incremental Learning | 增量学习 |
| 318 | Independent and Identically Distributed | 独立同分布 |
| 319 | Indicator Function | 指示函数 |
| 320 | Individual Learner | 个体学习器 |
| 321 | Induction | 归纳 |
| 322 | Inductive Bias | 归纳偏好 |
| 323 | Inductive Learning | 归纳学习 |
| 324 | Inductive Logic Programming | 归纳逻辑程序设计 |
| 325 | Inference | 推断 |
| 326 | Information Entropy | 信息熵 |
| 327 | Information Gain | 信息增益 |
| 328 | Inner Product | 内积 |
| 329 | Instance | 示例 |
| 330 | Internal Covariate Shift | 内部协变量偏移 |
| 331 | Inverse Matrix | 逆矩阵 |
| 332 | Inverse Resolution | 逆归结 |
| 333 | Isometric Mapping | 等度量映射 |
| 334 | Jacobian Matrix | 雅可比矩阵 |
| 335 | Jensen Inequality | Jensen不等式 |
| 336 | Joint Probability Distribution | 联合概率分布 |
| 337 | K-Armed Bandit Problem | k-摇臂老虎机 |
| 338 | K-Fold Cross Validation | k 折交叉验证 |
| 339 | KL Divergence | KL散度 |
| 340 | Karush-Kuhn-Tucker Condition | KKT条件 |
| 341 | Karush–Kuhn–Tucker | Karush–Kuhn–Tucker |
| 342 | Kernel Function | 核函数 |
| 343 | Kernel Method | 核方法 |
| 344 | Kernel Trick | 核技巧 |
| 345 | Kernelized Linear Discriminant Analysis | 核线性判别分析 |
| 346 | L-BFGS | L-BFGS |
| 347 | Label | 标签/标记 |
| 348 | Label Space | 标记空间 |
| 349 | Lagrange Duality | 拉格朗日对偶性 |
| 350 | Lagrange Multiplier | 拉格朗日乘子 |
| 351 | Language Model | 语言模型 |
| 352 | Laplace Smoothing | 拉普拉斯平滑 |
| 353 | Laplacian Correction | 拉普拉斯修正 |
| 354 | Latent Dirichlet Allocation | 潜在狄利克雷分配 |
| 355 | Latent Semantic Analysis | 潜在语义分析 |
| 356 | Latent Variable | 潜变量/隐变量 |
| 357 | Law of Large Numbers | 大数定律 |
| 358 | Layer Normalization | 层规范化 |
| 359 | Lazy Learning | 懒惰学习 |
| 360 | Leaky Relu | 泄漏修正线性单元/泄漏整流线性单元 |
| 361 | Learner | 学习器 |
| 362 | Learning | 学习 |
| 363 | Learning By Analogy | 类比学习 |
| 364 | Learning Rate | 学习率 |
| 365 | Learning Vector Quantization | 学习向量量化 |
| 366 | Least Square Method | 最小二乘法 |
| 367 | Least Squares Regression Tree | 最小二乘回归树 |
| 368 | Left Singular Vector | 左奇异向量 |
| 369 | Likelihood | 似然 |
| 370 | Linear Chain Conditional Random Field | 线性链条件随机场 |
| 371 | Linear Classification Model | 线性分类模型 |
| 372 | Linear Classifier | 线性分类器 |
| 373 | Linear Dependence | 线性相关 |
| 374 | Linear Discriminant Analysis | 线性判别分析 |
| 375 | Linear Model | 线性模型 |
| 376 | Linear Regression | 线性回归 |
| 377 | Link Function | 联系函数 |
| 378 | Local Markov Property | 局部马尔可夫性 |
| 379 | Local Minima | 局部极小 |
| 380 | Local Minimum | 局部极小 |
| 381 | Local Representation | 局部式表示/局部式表征 |
| 382 | Log Likelihood | 对数似然函数 |
| 383 | Log Linear Model | 对数线性模型 |
| 384 | Log-Likelihood | 对数似然 |
| 385 | Log-Linear Regression | 对数线性回归 |
| 386 | Logistic Function | 对数几率函数 |
| 387 | Logistic Regression | 对数几率回归 |
| 388 | Logit | 对数几率 |
| 389 | Long Short Term Memory | 长短期记忆 |
| 390 | Long Short-Term Memory Network | 长短期记忆网络 |
| 391 | Loopy Belief Propagation | 环状信念传播 |
| 392 | Loss Function | 损失函数 |
| 393 | Low Rank Matrix Approximation | 低秩矩阵近似 |
| 394 | Machine Learning | 机器学习 |
| 395 | Macron-R | 宏查全率 |
| 396 | Manhattan Distance | 曼哈顿距离 |
| 397 | Manifold | 流形 |
| 398 | Manifold Assumption | 流形假设 |
| 399 | Manifold Learning | 流形学习 |
| 400 | Margin | 间隔 |
| 401 | Marginal Distribution | 边缘分布 |
| 402 | Marginal Independence | 边缘独立性 |
| 403 | Marginalization | 边缘化 |
| 404 | Markov Chain | 马尔可夫链 |
| 405 | Markov Chain Monte Carlo | 马尔可夫链蒙特卡罗 |
| 406 | Markov Decision Process | 马尔可夫决策过程 |
| 407 | Markov Network | 马尔可夫网络 |
| 408 | Markov Process | 马尔可夫过程 |
| 409 | Markov Random Field | 马尔可夫随机场 |
| 410 | Mask | 掩码 |
| 411 | Matrix | 矩阵 |
| 412 | Matrix Inversion | 逆矩阵 |
| 413 | Max Pooling | 最大汇聚 |
| 414 | Maximal Clique | 最大团 |
| 415 | Maximum Entropy Model | 最大熵模型 |
| 416 | Maximum Likelihood Estimation | 极大似然估计 |
| 417 | Maximum Margin | 最大间隔 |
| 418 | Mean Filed | 平均场 |
| 419 | Mean Pooling | 平均汇聚 |
| 420 | Mean Squared Error | 均方误差 |
| 421 | Mean-Field | 平均场 |
| 422 | Memory Network | 记忆网络 |
| 423 | Message Passing | 消息传递 |
| 424 | Metric Learning | 度量学习 |
| 425 | Micro-R | 微查全率 |
| 426 | Minibatch | 小批量 |
| 427 | Minimal Description Length | 最小描述长度 |
| 428 | Minimax Game | 极小极大博弈 |
| 429 | Minkowski Distance | 闵可夫斯基距离 |
| 430 | Mixture of Experts | 混合专家模型 |
| 431 | Mixture-of-Gaussian | 高斯混合 |
| 432 | Model | 模型 |
| 433 | Model Selection | 模型选择 |
| 434 | Momentum Method | 动量法 |
| 435 | Monte Carlo Method | 蒙特卡罗方法 |
| 436 | Moral Graph | 端正图/道德图 |
| 437 | Moralization | 道德化 |
| 438 | Multi-Class Classification | 多分类 |
| 439 | Multi-Head Attention | 多头注意力 |
| 440 | Multi-Head Self-Attention | 多头自注意力 |
| 441 | Multi-Kernel Learning | 多核学习 |
| 442 | Multi-Label Learning | 多标记学习 |
| 443 | Multi-Layer Feedforward Neural Networks | 多层前馈神经网络 |
| 444 | Multi-Layer Perceptron | 多层感知机 |
| 445 | Multinomial Distribution | 多项分布 |
| 446 | Multiple Dimensional Scaling | 多维缩放 |
| 447 | Multiple Linear Regression | 多元线性回归 |
| 448 | Multitask Learning | 多任务学习 |
| 449 | Multivariate Normal Distribution | 多元正态分布 |
| 450 | Mutual Information | 互信息 |
| 451 | N-Gram Model | N元模型 |
| 452 | Naive Bayes | 朴素贝叶斯 |
| 453 | Naive Bayes Classifier | 朴素贝叶斯分类器 |
| 454 | Nearest Neighbor Classifier | 最近邻分类器 |
| 455 | Negative Log Likelihood | 负对数似然函数 |
| 456 | Neighbourhood Component Analysis | 近邻成分分析 |
| 457 | Net Input | 净输入 |
| 458 | Neural Network | 神经网络 |
| 459 | Neural Turing Machine | 神经图灵机 |
| 460 | Neuron | 神经元 |
| 461 | Newton Method | 牛顿法 |
| 462 | No Free Lunch Theorem | 没有免费午餐定理 |
| 463 | Noise-Contrastive Estimation | 噪声对比估计 |
| 464 | Nominal Attribute | 列名属性 |
| 465 | Non-Convex Optimization | 非凸优化 |
| 466 | Non-Metric Distance | 非度量距离 |
| 467 | Non-Negative Matrix Factorization | 非负矩阵分解 |
| 468 | Non-Ordinal Attribute | 无序属性 |
| 469 | Norm | 范数 |
| 470 | Normal Distribution | 正态分布 |
| 471 | Normalization | 规范化 |
| 472 | Nuclear Norm | 核范数 |
| 473 | Number of Epochs | 轮数 |
| 474 | Numerical Attribute | 数值属性 |
| 475 | Object Detection | 目标检测 |
| 476 | Oblique Decision Tree | 斜决策树 |
| 477 | Occam's Razor | 奥卡姆剃刀 |
| 478 | Odds | 几率 |
| 479 | Off-Policy | 异策略 |
| 480 | On-Policy | 同策略 |
| 481 | One-Dependent Estimator | 独依赖估计 |
| 482 | One-Hot | 独热 |
| 483 | One-Shot Learning | 单试学习 |
| 484 | Online Learning | 在线学习 |
| 485 | Optimizer | 优化器 |
| 486 | Ordinal Attribute | 有序属性 |
| 487 | Orthogonal | 正交 |
| 488 | Orthogonal Matrix | 正交矩阵 |
| 489 | Out-Of-Bag Estimate | 包外估计 |
| 490 | Outlier | 异常点 |
| 491 | Over-Parameterized | 过度参数化 |
| 492 | Overfitting | 过拟合 |
| 493 | Oversampling | 过采样 |
| 494 | Pac-Learnable | PAC可学习 |
| 495 | Padding | 填充 |
| 496 | Pairwise Markov Property | 成对马尔可夫性 |
| 497 | Parallel Distributed Processing | 分布式并行处理 |
| 498 | Parameter | 参数 |
| 499 | Parameter Estimation | 参数估计 |
| 500 | Parameter Space | 参数空间 |
| 501 | Parameter Tuning | 调参 |
| 502 | Parametric ReLU | 参数化修正线性单元/参数化整流线性单元 |
| 503 | Part-Of-Speech Tagging | 词性标注 |
| 504 | Partial Derivative | 偏导数 |
| 505 | Partially Observable Markov Decision Processes | 部分可观测马尔可夫决策过程 |
| 506 | Partition Function | 配分函数 |
| 507 | Perceptron | 感知机 |
| 508 | Performance Measure | 性能度量 |
| 509 | Perplexity | 困惑度 |
| 510 | Pointer Network | 指针网络 |
| 511 | Policy | 策略 |
| 512 | Policy Gradient | 策略梯度 |
| 513 | Policy Iteration | 策略迭代 |
| 514 | Polynomial Kernel Function | 多项式核函数 |
| 515 | Pooling | 汇聚 |
| 516 | Pooling Layer | 汇聚层 |
| 517 | Positive Definite Matrix | 正定矩阵 |
| 518 | Post-Pruning | 后剪枝 |
| 519 | Potential Function | 势函数 |
| 520 | Power Method | 幂法 |
| 521 | Pre-Training | 预训练 |
| 522 | Precision | 查准率/准确率 |
| 523 | Prepruning | 预剪枝 |
| 524 | Primal Problem | 主问题 |
| 525 | Primary Visual Cortex | 初级视觉皮层 |
| 526 | Principal Component Analysis | 主成分分析 |
| 527 | Prior | 先验 |
| 528 | Probabilistic Context-Free Grammar | 概率上下文无关文法 |
| 529 | Probabilistic Graphical Model | 概率图模型 |
| 530 | Probabilistic Model | 概率模型 |
| 531 | Probability Density Function | 概率密度函数 |
| 532 | Probability Distribution | 概率分布 |
| 533 | Probably Approximately Correct | 概率近似正确 |
| 534 | Proposal Distribution | 提议分布 |
| 535 | Prototype-Based Clustering | 原型聚类 |
| 536 | Proximal Gradient Descent | 近端梯度下降 |
| 537 | Pruning | 剪枝 |
| 538 | Quadratic Loss Function | 平方损失函数 |
| 539 | Quadratic Programming | 二次规划 |
| 540 | Quasi Newton Method | 拟牛顿法 |
| 541 | Radial Basis Function | 径向基函数 |
| 542 | Random Forest | 随机森林 |
| 543 | Random Sampling | 随机采样 |
| 544 | Random Search | 随机搜索 |
| 545 | Random Variable | 随机变量 |
| 546 | Random Walk | 随机游走 |
| 547 | Recall | 查全率/召回率 |
| 548 | Receptive Field | 感受野 |
| 549 | Reconstruction Error | 重构误差 |
| 550 | Rectified Linear Unit | 修正线性单元/整流线性单元 |
| 551 | Recurrent Neural Network | 循环神经网络 |
| 552 | Recursive Neural Network | 递归神经网络 |
| 553 | Regression | 回归 |
| 554 | Regularization | 正则化 |
| 555 | Regularizer | 正则化项 |
| 556 | Reinforcement Learning | 强化学习 |
| 557 | Relative Entropy | 相对熵 |
| 558 | Reparameterization | 再参数化/重参数化 |
| 559 | Representation | 表示 |
| 560 | Representation Learning | 表示学习 |
| 561 | Representer Theorem | 表示定理 |
| 562 | Reproducing Kernel Hilbert Space | 再生核希尔伯特空间 |
| 563 | Rescaling | 再缩放 |
| 564 | Reset Gate | 重置门 |
| 565 | Residual Connection | 残差连接 |
| 566 | Residual Network | 残差网络 |
| 567 | Restricted Boltzmann Machine | 受限玻尔兹曼机 |
| 568 | Reward | 奖励 |
| 569 | Ridge Regression | 岭回归 |
| 570 | Right Singular Vector | 右奇异向量 |
| 571 | Risk | 风险 |
| 572 | Robustness | 稳健性 |
| 573 | Root Node | 根结点 |
| 574 | Rule Learning | 规则学习 |
| 575 | Saddle Point | 鞍点 |
| 576 | Sample | 样本 |
| 577 | Sample Complexity | 样本复杂度 |
| 578 | Sample Space | 样本空间 |
| 579 | Scalar | 标量 |
| 580 | Selective Ensemble | 选择性集成 |
| 581 | Self Information | 自信息 |
| 582 | Self-Attention | 自注意力 |
| 583 | Self-Organizing Map | 自组织映射网 |
| 584 | Self-Training | 自训练 |
| 585 | Semi-Definite Programming | 半正定规划 |
| 586 | Semi-Naive Bayes Classifiers | 半朴素贝叶斯分类器 |
| 587 | Semi-Restricted Boltzmann Machine | 半受限玻尔兹曼机 |
| 588 | Semi-Supervised Clustering | 半监督聚类 |
| 589 | Semi-Supervised Learning | 半监督学习 |
| 590 | Semi-Supervised Support Vector Machine | 半监督支持向量机 |
| 591 | Sentiment Analysis | 情感分析 |
| 592 | Separating Hyperplane | 分离超平面 |
| 593 | Sequential Covering | 序贯覆盖 |
| 594 | Sigmoid Belief Network | Sigmoid信念网络 |
| 595 | Sigmoid Function | Sigmoid函数 |
| 596 | Signed Distance | 带符号距离 |
| 597 | Similarity Measure | 相似度度量 |
| 598 | Simulated Annealing | 模拟退火 |
| 599 | Simultaneous Localization And Mapping | 即时定位与地图构建 |
| 600 | Singular Value | 奇异值 |
| 601 | Singular Value Decomposition | 奇异值分解 |
| 602 | Skip-Gram Model | 跳元模型 |
| 603 | Smoothing | 平滑 |
| 604 | Soft Margin | 软间隔 |
| 605 | Soft Margin Maximization | 软间隔最大化 |
| 606 | Softmax | Softmax/软最大化 |
| 607 | Softmax Function | Softmax函数/软最大化函数 |
| 608 | Softmax Regression | Softmax回归/软最大化回归 |
| 609 | Softplus Function | Softplus函数 |
| 610 | Span | 张成子空间 |
| 611 | Sparse Coding | 稀疏编码 |
| 612 | Sparse Representation | 稀疏表示 |
| 613 | Sparsity | 稀疏性 |
| 614 | Specialization | 特化 |
| 615 | Splitting Variable | 切分变量 |
| 616 | Squashing Function | 挤压函数 |
| 617 | Standard Normal Distribution | 标准正态分布 |
| 618 | State | 状态 |
| 619 | State Value Function | 状态值函数 |
| 620 | State-Action Value Function | 状态-动作值函数 |
| 621 | Stationary Distribution | 平稳分布 |
| 622 | Stationary Point | 驻点 |
| 623 | Statistical Learning | 统计学习 |
| 624 | Steepest Descent | 最速下降法 |
| 625 | Stochastic Gradient Descent | 随机梯度下降 |
| 626 | Stochastic Matrix | 随机矩阵 |
| 627 | Stochastic Process | 随机过程 |
| 628 | Stratified Sampling | 分层采样 |
| 629 | Stride | 步幅 |
| 630 | Structural Risk | 结构风险 |
| 631 | Structural Risk Minimization | 结构风险最小化 |
| 632 | Subsample | 子采样 |
| 633 | Subsampling | 下采样 |
| 634 | Subset Search | 子集搜索 |
| 635 | Subspace | 子空间 |
| 636 | Supervised Learning | 监督学习 |
| 637 | Support Vector | 支持向量 |
| 638 | Support Vector Expansion | 支持向量展式 |
| 639 | Support Vector Machine | 支持向量机 |
| 640 | Surrogat Loss | 替代损失 |
| 641 | Surrogate Function | 替代函数 |
| 642 | Surrogate Loss Function | 代理损失函数 |
| 643 | Symbolism | 符号主义 |
| 644 | Tangent Propagation | 正切传播 |
| 645 | Teacher Forcing | 强制教学 |
| 646 | Temporal-Difference Learning | 时序差分学习 |
| 647 | Tensor | 张量 |
| 648 | Test Error | 测试误差 |
| 649 | Test Sample | 测试样本 |
| 650 | Test Set | 测试集 |
| 651 | Threshold | 阈值 |
| 652 | Threshold Logic Unit | 阈值逻辑单元 |
| 653 | Threshold-Moving | 阈值移动 |
| 654 | Tied Weight | 捆绑权重 |
| 655 | Tikhonov Regularization | Tikhonov正则化 |
| 656 | Time Delay Neural Network | 时延神经网络 |
| 657 | Time Homogenous Markov Chain | 时间齐次马尔可夫链 |
| 658 | Time Step | 时间步 |
| 659 | Token | 词元 |
| 660 | Tokenization | 词元化 |
| 661 | Tokenize | 词元化 |
| 662 | Tokenizer | 词元分析器 |
| 663 | Topic Model | 话题模型 |
| 664 | Topic Modeling | 话题分析 |
| 665 | Trace | 迹 |
| 666 | Training | 训练 |
| 667 | Training Error | 训练误差 |
| 668 | Training Sample | 训练样本 |
| 669 | Training Set | 训练集 |
| 670 | Transductive Learning | 直推学习 |
| 671 | Transductive Transfer Learning | 直推迁移学习 |
| 672 | Transfer Learning | 迁移学习 |
| 673 | Transformer | Transformer |
| 674 | Transformer Model | Transformer模型 |
| 675 | Transpose | 转置 |
| 676 | Transposed Convolution | 转置卷积 |
| 677 | Trial And Error | 试错 |
| 678 | Trigram | 三元语法 |
| 679 | Turing Machine | 图灵机 |
| 680 | Underfitting | 欠拟合 |
| 681 | Undersampling | 欠采样 |
| 682 | Undirected Graphical Model | 无向图模型 |
| 683 | Uniform Distribution | 均匀分布 |
| 684 | Unigram | 一元语法 |
| 685 | Unit | 单元 |
| 686 | Universal Approximation Theorem | 通用近似定理 |
| 687 | Universal Approximator | 通用近似器 |
| 688 | Universal Function Approximator | 通用函数近似器 |
| 689 | Unknown Token | 未知词元 |
| 690 | Unsupervised Layer-Wise Training | 无监督逐层训练 |
| 691 | Unsupervised Learning | 无监督学习 |
| 692 | Update Gate | 更新门 |
| 693 | Upsampling | 上采样 |
| 694 | V-Structure | V型结构 |
| 695 | Validation Set | 验证集 |
| 696 | Validity Index | 有效性指标 |
| 697 | Value Function Approximation | 值函数近似 |
| 698 | Value Iteration | 值迭代 |
| 699 | Vanishing Gradient Problem | 梯度消失问题 |
| 700 | Vapnik-Chervonenkis Dimension | VC维 |
| 701 | Variable Elimination | 变量消去 |
| 702 | Variance | 方差 |
| 703 | Variational Autoencoder | 变分自编码器 |
| 704 | Variational Inference | 变分推断 |
| 705 | Vector | 向量 |
| 706 | Vector Space Model | 向量空间模型 |
| 707 | Version Space | 版本空间 |
| 708 | Viterbi Algorithm | 维特比算法 |
| 709 | Vocabulary | 词表 |
| 710 | Warp | 线程束 |
| 711 | Weak Learner | 弱学习器 |
| 712 | Weakly Supervised Learning | 弱监督学习 |
| 713 | Weight | 权重 |
| 714 | Weight Decay | 权重衰减 |
| 715 | Weight Sharing | 权共享 |
| 716 | Weighted Voting | 加权投票 |
| 717 | Whitening | 白化 |
| 718 | Winner-Take-All | 胜者通吃 |
| 719 | Within-Class Scatter Matrix | 类内散度矩阵 |
| 720 | Word Embedding | 词嵌入 |
| 721 | Word Sense Disambiguation | 词义消歧 |
| 722 | Word Vector | 词向量 |
| 723 | Zero Padding | 零填充 |
| 724 | Zero-Shot Learning | 零试学习 |
| 725 | Zipf's Law | 齐普夫定律 |