| 201 | Early Stopping | 早停 |
| 202 | Eigendecomposition | 特征分解 |
| 203 | Eigenvalue | 特征值 |
| 204 | Element-Wise Product | 逐元素积 |
| 205 | Embedding | 嵌入 |
| 206 | Empirical Conditional Entropy | 经验条件熵 |
| 207 | Empirical Distribution | 经验分布 |
| 208 | Empirical Entropy | 经验熵 |
| 209 | Empirical Error | 经验误差 |
| 210 | Empirical Risk | 经验风险 |
| 211 | Empirical Risk Minimization | 经验风险最小化 |
| 212 | Encoder | 编码器 |
| 213 | Encoding | 编码 |
| 214 | End-To-End | 端到端 |
| 215 | Energy Function | 能量函数 |
| 216 | Energy-Based Model | 基于能量的模型 |
| 217 | Ensemble Learning | 集成学习 |
| 218 | Ensemble Pruning | 集成修剪 |
| 219 | Entropy | 熵 |
| 220 | Episode | 回合 |
| 221 | Epoch | 轮 |
| 222 | Error | 误差 |
| 223 | Error Backpropagation | 误差反向传播 |
| 224 | Error Backpropagation Algorithm | 误差反向传播算法 |
| 225 | Error Correcting Output Codes | 纠错输出编码 |
| 226 | Error Rate | 错误率 |
| 227 | Error-Ambiguity Decomposition | 误差-分歧分解 |
| 228 | Estimator | 估计/估计量 |
| 229 | Euclidean Distance | 欧氏距离 |
| 230 | Evidence | 证据 |
| 231 | Evidence Lower Bound | 证据下界 |
| 232 | Exact Inference | 精确推断 |
| 233 | Example | 样例 |
| 234 | Expectation | 期望 |
| 235 | Expectation Maximization | 期望最大化 |
| 236 | Expected Loss | 期望损失 |
| 237 | Expert System | 专家系统 |
| 238 | Exploding Gradient | 梯度爆炸 |
| 239 | Exponential Loss Function | 指数损失函数 |
| 240 | Factor | 因子 |
| 241 | Factorization | 因子分解 |
| 242 | Feature | 特征 |
| 243 | Feature Engineering | 特征工程 |
| 244 | Feature Map | 特征图 |
| 245 | Feature Selection | 特征选择 |
| 246 | Feature Vector | 特征向量 |
| 247 | Featured Learning | 特征学习 |
| 248 | Feedforward | 前馈 |
| 249 | Feedforward Neural Network | 前馈神经网络 |
| 250 | Few-Shot Learning | 少试学习 |
| 251 | Filter | 滤波器 |
| 252 | Fine-Tuning | 微调 |
| 253 | Fluctuation | 振荡 |
| 254 | Forget Gate | 遗忘门 |
| 255 | Forward Propagation | 前向传播/正向传播 |
| 256 | Forward Stagewise Algorithm | 前向分步算法 |
| 257 | Fractionally Strided Convolution | 微步卷积 |
| 258 | Frobenius Norm | Frobenius 范数 |
| 259 | Full Padding | 全填充 |
| 260 | Functional | 泛函 |
| 261 | Functional Neuron | 功能神经元 |
| 262 | Gated RNN | 门控RNN |
| 263 | Gated Recurrent Unit | 门控循环单元 |
| 264 | Gaussian Distribution | 高斯分布 |
| 265 | Gaussian Kernel | 高斯核 |
| 266 | Gaussian Kernel Function | 高斯核函数 |
| 267 | Gaussian Mixture Model | 高斯混合模型 |
| 268 | Gaussian Process | 高斯过程 |
| 269 | Generalization Ability | 泛化能力 |
| 270 | Generalization Error | 泛化误差 |
| 271 | Generalization Error Bound | 泛化误差上界 |
| 272 | Generalize | 泛化 |
| 273 | Generalized Lagrange Function | 广义拉格朗日函数 |
| 274 | Generalized Linear Model | 广义线性模型 |
| 275 | Generalized Rayleigh Quotient | 广义瑞利商 |
| 276 | Generative Adversarial Network | 生成对抗网络 |
| 277 | Generative Model | 生成式模型 |
| 278 | Generator | 生成器 |
| 279 | Generator Network | 生成器网络 |
| 280 | Genetic Algorithm | 遗传算法 |
| 281 | Gibbs Distribution | 吉布斯分布 |
| 282 | Gibbs Sampling | 吉布斯采样/吉布斯抽样 |
| 283 | Gini Index | 基尼指数 |
| 284 | Global Markov Property | 全局马尔可夫性 |
| 285 | Global Minimum | 全局最小 |
| 286 | Gradient | 梯度 |
| 287 | Gradient Clipping | 梯度截断 |
| 288 | Gradient Descent | 梯度下降 |
| 289 | Gradient Descent Method | 梯度下降法 |
| 290 | Gradient Exploding Problem | 梯度爆炸问题 |
| 291 | Gram Matrix | Gram 矩阵 |
| 292 | Graph Convolutional Network | 图卷积神经网络/图卷积网络 |
| 293 | Graph Neural Network | 图神经网络 |
| 294 | Graphical Model | 图模型 |
| 295 | Grid Search | 网格搜索 |
| 296 | Ground Truth | 真实值 |
| 297 | Hadamard Product | Hadamard积 |
| 298 | Hamming Distance | 汉明距离 |
| 299 | Hard Margin | 硬间隔 |
| 300 | Hebbian Rule | 赫布法则 |
| 301 | Hidden Layer | 隐藏层 |
| 302 | Hidden Markov Model | 隐马尔可夫模型 |
| 303 | Hidden Variable | 隐变量 |
| 304 | Hierarchical Clustering | 层次聚类 |
| 305 | Hilbert Space | 希尔伯特空间 |
| 306 | Hinge Loss Function | 合页损失函数/Hinge损失函数 |
| 307 | Hold-Out | 留出法 |
| 308 | Hyperparameter | 超参数 |
| 309 | Hyperparameter Optimization | 超参数优化 |
| 310 | Hypothesis | 假设 |
| 311 | Hypothesis Space | 假设空间 |
| 312 | Hypothesis Test | 假设检验 |
| 313 | Identity Matrix | 单位矩阵 |
| 314 | Imitation Learning | 模仿学习 |
| 315 | Importance Sampling | 重要性采样 |
| 316 | Improved Iterative Scaling | 改进的迭代尺度法 |
| 317 | Incremental Learning | 增量学习 |
| 318 | Independent and Identically Distributed | 独立同分布 |
| 319 | Indicator Function | 指示函数 |
| 320 | Individual Learner | 个体学习器 |
| 321 | Induction | 归纳 |
| 322 | Inductive Bias | 归纳偏好 |
| 323 | Inductive Learning | 归纳学习 |
| 324 | Inductive Logic Programming | 归纳逻辑程序设计 |
| 325 | Inference | 推断 |
| 326 | Information Entropy | 信息熵 |
| 327 | Information Gain | 信息增益 |
| 328 | Inner Product | 内积 |
| 329 | Instance | 示例 |
| 330 | Internal Covariate Shift | 内部协变量偏移 |
| 331 | Inverse Matrix | 逆矩阵 |
| 332 | Inverse Resolution | 逆归结 |
| 333 | Isometric Mapping | 等度量映射 |
| 334 | Jacobian Matrix | 雅可比矩阵 |
| 335 | Jensen Inequality | Jensen不等式 |
| 336 | Joint Probability Distribution | 联合概率分布 |
| 337 | K-Armed Bandit Problem | k-摇臂老虎机 |
| 338 | K-Fold Cross Validation | k 折交叉验证 |
| 339 | KL Divergence | KL散度 |
| 340 | Karush-Kuhn-Tucker Condition | KKT条件 |
| 341 | Karush–Kuhn–Tucker | Karush–Kuhn–Tucker |
| 342 | Kernel Function | 核函数 |
| 343 | Kernel Method | 核方法 |
| 344 | Kernel Trick | 核技巧 |
| 345 | Kernelized Linear Discriminant Analysis | 核线性判别分析 |
| 346 | L-BFGS | L-BFGS |
| 347 | Label | 标签/标记 |
| 348 | Label Space | 标记空间 |
| 349 | Lagrange Duality | 拉格朗日对偶性 |
| 350 | Lagrange Multiplier | 拉格朗日乘子 |
| 351 | Language Model | 语言模型 |
| 352 | Laplace Smoothing | 拉普拉斯平滑 |
| 353 | Laplacian Correction | 拉普拉斯修正 |
| 354 | Latent Dirichlet Allocation | 潜在狄利克雷分配 |
| 355 | Latent Semantic Analysis | 潜在语义分析 |
| 356 | Latent Variable | 潜变量/隐变量 |
| 357 | Law of Large Numbers | 大数定律 |
| 358 | Layer Normalization | 层规范化 |
| 359 | Lazy Learning | 懒惰学习 |
| 360 | Leaky Relu | 泄漏修正线性单元/泄漏整流线性单元 |
| 361 | Learner | 学习器 |
| 362 | Learning | 学习 |
| 363 | Learning By Analogy | 类比学习 |
| 364 | Learning Rate | 学习率 |
| 365 | Learning Vector Quantization | 学习向量量化 |
| 366 | Least Square Method | 最小二乘法 |
| 367 | Least Squares Regression Tree | 最小二乘回归树 |
| 368 | Left Singular Vector | 左奇异向量 |
| 369 | Likelihood | 似然 |
| 370 | Linear Chain Conditional Random Field | 线性链条件随机场 |
| 371 | Linear Classification Model | 线性分类模型 |
| 372 | Linear Classifier | 线性分类器 |
| 373 | Linear Dependence | 线性相关 |
| 374 | Linear Discriminant Analysis | 线性判别分析 |
| 375 | Linear Model | 线性模型 |
| 376 | Linear Regression | 线性回归 |
| 377 | Link Function | 联系函数 |
| 378 | Local Markov Property | 局部马尔可夫性 |
| 379 | Local Minima | 局部极小 |
| 380 | Local Minimum | 局部极小 |
| 381 | Local Representation | 局部式表示/局部式表征 |
| 382 | Log Likelihood | 对数似然函数 |
| 383 | Log Linear Model | 对数线性模型 |
| 384 | Log-Likelihood | 对数似然 |
| 385 | Log-Linear Regression | 对数线性回归 |
| 386 | Logistic Function | 对数几率函数 |
| 387 | Logistic Regression | 对数几率回归 |
| 388 | Logit | 对数几率 |
| 389 | Long Short Term Memory | 长短期记忆 |
| 390 | Long Short-Term Memory Network | 长短期记忆网络 |
| 391 | Loopy Belief Propagation | 环状信念传播 |
| 392 | Loss Function | 损失函数 |
| 393 | Low Rank Matrix Approximation | 低秩矩阵近似 |
| 394 | Machine Learning | 机器学习 |
| 395 | Macron-R | 宏查全率 |
| 396 | Manhattan Distance | 曼哈顿距离 |
| 397 | Manifold | 流形 |
| 398 | Manifold Assumption | 流形假设 |
| 399 | Manifold Learning | 流形学习 |
| 400 | Margin | 间隔 |